The influence of patient positioning uncertainties in proton radiotherapy on proton range and dose distributions
نویسندگان
چکیده
منابع مشابه
Patient positioning in the proton radiotherapy era
The main hindrance to the diffusion of proton therapy facilities is the high cost for gantry installations. An alternative technical option is provided by fixed-beam treatment rooms, where the patient is rotated and translated in space with a robotic arm solution to enable beam incidence from various angles. The technological efforts based on robotic applications made up to now for patient posi...
متن کاملQuantum mechanical proton range in human body
Introduction: Proton therapy delivers radiation to tumor tissue in a much more confined way than conventional photon therapy thus allowing the radiation oncologist to use a greater dose while still minimizing side. Materials and Methods: protons release most of their energy within the tumor region. As a result, the treating physician can potentially give an...
متن کاملDose mapping sensitivity to deformable registration uncertainties in fractionated radiotherapy – applied to prostate proton treatments
BACKGROUND Calculation of accumulated dose in fractionated radiotherapy based on spatial mapping of the dose points generally requires deformable image registration (DIR). The accuracy of the accumulated dose thus depends heavily on the DIR quality. This motivates investigations of how the registration uncertainty influences dose planning objectives and treatment outcome predictions.A framework...
متن کاملStatistical uncertainty estimation in the calculation of the proton range in water phantom.
Introduction: GATE (Geant4 Application for Tomographic Emission) is a Monte Carlo simulation platform developed by the OpenGATE collaboration since 2001 and first publicly released in 2004. In Geant4, each physics process is described by a model (several models are sometimes available for a given physics process) and a corresponding cross-section table. All Geant4 physics model...
متن کاملSite-specific range uncertainties caused by dose calculation algorithms for proton therapy.
The purpose of this study was to assess the possibility of introducing site-specific range margins to replace current generic margins in proton therapy. Further, the goal was to study the potential of reducing margins with current analytical dose calculations methods. For this purpose we investigate the impact of complex patient geometries on the capability of analytical dose calculation algori...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Medical Physics
سال: 2014
ISSN: 0094-2405
DOI: 10.1118/1.4892601